Ela on Classification of Normal Matrices in Indefinite Inner Product Spaces∗
نویسنده
چکیده
Canonical forms are developed for several sets of matrices that are normal with respect to an indefinite inner product induced by a nonsingular Hermitian, symmetric, or skewsymmetric matrix. The most general result covers the case of polynomially normal matrices, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial of the original matrix. From this result, canonical forms for complex matrices that are selfadjoint, skewadjoint, or unitary with respect to the given indefinite inner product are derived. Most of the canonical forms for the latter three special types of normal matrices are known in the literature, but it is the aim of this paper to present a general theory that allows the unified treatment of all different cases and to collect known results and new results such that all canonical forms for the complex case can be found in a single source.
منابع مشابه
Ela Essential Decomposition of Polynomially Normal Matrices in Real Indefinite Inner Product Spaces∗
Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...
متن کاملEla Shells of Matrices in Indefinite Inner Product Spaces
The notion of the shell of a Hilbert space operator, which is a useful generalization (proposed by Wielandt) of the numerical range, is extended to operators in spaces with an indefinite inner product. For the most part, finite dimensional spaces are considered. Geometric properties of shells (convexity, boundedness, being a subset of a line, etc.) are described, as well as shells of operators ...
متن کاملEla Hyponormal Matrices and Semidefinite Invariant Subspaces in Indefinite Inner Products
It is shown that, for any given polynomially normal matrix with respect to an indefinite inner product, a nonnegative (with respect to the indefinite inner product) invariant subspace always admits an extension to an invariant maximal nonnegative subspace. Such an extension property is known to hold true for general normal matrices if the nonnegative invariant subspace is actually neutral. An e...
متن کاملEssential decomposition of polynomially normal matrices in real indefinite inner product spaces
Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...
متن کاملEla Quasihyponormal and Strongly Quasihyponormal Matrices in Inner Product Spaces
where 〈·, ·〉 denotes the standard inner product on C. If the Hermitian matrix H is invertible, then the indefinite inner product is nondegenerate. In that case, for every matrix T ∈ C, there is the unique matrix T [∗] satisfying [T x, y] = [x, T y] for all x, y ∈ C, and it is given by T [∗] = HT H . In these spaces, the notion of H-quasihyponormal matrix can be introduced by analogy with the qu...
متن کامل